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ABSTRACT A generalized l theorem of natu-
ral selection is derived for populations incorporating both
genetic and cultural transmission. The phenotype is deter-
mined by an arbitrary number of multflelc loci with two-
factor epistasis and an arbitrary linkage map, as well as by
cultural transmission from the parents. Generations are dis-
crete butpartaily overlapping, and mating may be nonrandom
at either the genotypic or the phenotypic level (or both). I show
that cultural transmission has several important impUcations
for the evolution of population fitness, most notably that there
is a time lag in the response to selection such that the future
evolution depends on the past selection history of the popula-
tion.

Suppose there areL loci and M, allelesA(n)(iR = 1, 2, ...
Mn) at locus n. Let i = (il, 2. . ., iL) and (ij) = ((1,j), (i2,
i2), *e@,(iL, jL)) and denote the frequency of haploid
genotype (gamete) A,(1) Ai22 ... A _ Ai by Pi and the
frequency of the ordered diploid genotype among juveniles
after socialization Ail A51)/A2 A(2)/ . A. (L) A(L) = AA
by Pij. Let Vij(x, y)dx dy be the proportion ofjuveniles after
socialization but prior to reproduction with genotype AIAj
who have parents with fitness values in [x, x + dx] and [y, y
+ dy] [hereafter referred to as genoparental type AiAj(x, y)J,
and let Pij(z)dz be the proportion ofjuveniles with genotype
AiAiand fitness in [z, z + dz]. Let Wij(x, y)denotetheaverage
fitness of an individual with genotype AiAj and parental
values (x, y). The mean fitness of the population is then

Fisher's fundamental theorem of natural selection (1) states
that the rate of change in the average fitness of a population
is proportional to the additive genetic variance in fitness.
Since its original derivation, there have appeared a number of
extensions of the theorem to multiple loci under generalized
mating (2-7), as well as to the case of both fertility and
viability selection (8-10). In all these models, fitnesses are
assigned to genotypes, so that deterministic changes in the
mean fitness arise solely from changes in the genetic com-
position of the population.
While these models are appropriate for some traits, they

are not appropriate for traits subject to both genetic and
cultural transmission. In the latter case, the probability of an
individual's developing a particular phenotype depends on
both his or her genetic constitution and the social environ-
ment in which he or she was raised. Consequently, it is the
transmission of both genetic and cultural information [gene-
culture transmission (11)] that determines how traits evolve.
Given the prevalence of cultural transmission in both human
(12, 13) and nonhuman (14) populations and the growing
interest in the effects of cultural transmission on evolution
(11, 15-18), there is a need to develop an analog of Fisher's
theorem for the gene-culture case. My first attempt (19)
considered the simple situation where fitness is determined
by a single locus subject to random mating. In this note, the
analysis is extended to the more realistic case of an arbitrary
number of loci under generalized mating.

THE MODEL
Offspring are born and spend a period oftime in the company
of their parents. By the end of this socialization period, the
offspring phenotype is fully developed and is fixed for the
duration of the offspring's lifetime. In the case considered
here, the phenotype is fitness, expressed as a survival
probability to reproductive maturity. Juveniles that survive
to reproductive maturity then mate to produce the next
generation.

W f dx dy Wij(x, y),pv(x, y)- [1]

In what follows, prime denotes values in the next generation
and A denotes the per generation change. From Eq. 1, we
have

&W = AW++ ff dx dy Wj(x, y)A(pfi(x, y) [2]

as the per generation change in the average fitness W, where
vW is the mean of changes in the average fitness of individ-

uals of specified genotype and parentage over the next
generation:

AW = E f f dx dy AWij(x, y).pij(x, y)'.

We can decompose Wij(x, y) as

Wjj(x, y) = W + wj + c(x, y) + eiO, y),

with

[3]

[4]

[5]C(X, y) = p1(X) + /2(y) + n(X, y).

In Eq. 4, wij, c(x, y) and eij(x, y) are genotypic, cultural, and
gene-culture deviations quantifying the effect of genotype,
parental phenotype, and the interaction of genotype and
parental phenotype on offspring phenotype, respectively. In
decomposing Wj(x, y) as shown, I assume that cultural
transmission is from parents to offspring (12). I also assume
that while an offspring's genotype may influence the proba-
bility of it developing a particular trait, all parental genotypes
are equally effective at transmitting their phenotype. In Eq.
5, the cultural deviation is decomposed into additive contri-
butions by each parent (k and a cultural "dominance" term

To allow for nonrandom mating at both the genotypic and
phenotypic levels, set

Qi,(x, y) = pij(x, y) - pi(x)pj(y), [6]
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where qp1(x)dx = Yj f dy dxqp1j(x, y) is the proportion of
individuals with haploid genotype Ai and at least one parent
with fitness in [x, x + dx]. Q,1(x, y) defines a gene-culture
deviation from random mating. If there is random combina-
tion of gametes and random mating among parental pheno-
types, Qij(x, y) = 0 for all i, j, x, and y. Integrating in Eq. 6
with respect to x and y, and summing over i and j give,
respectively,

Qij = P11 - PiPj, [7a]

Q(x, y) = O(X, y) - p(x)q(Py), [7b]

where Qij is the deviation from random combination of
gametes, Q(x, y) is the deviation from random combination of
parental phenotypes, and (p(y)dy = Iij f dx dy (pij(x, y) is the
proportion of juveniles having at least one parent with
phenotypic value in [y, y + dy].
The per generation change in the mean fitness can be

written as

AW = I&W + AWG + AWC + AWGC, [8]

where AWG, AWc, and AWGC are the components of change
arising from genetic, cultural, and gene-culture effects, re-
spectively. I suppose that the multilocus genotypic deviation
wij can be decomposed as

=qrbki m rn E i; km, In E i
m,n

[9]

i.e., as the sum of two-locus contributions w(m,kl, where for
ease of notation here and henceforth I suppress the double
subscripts. Set

w(mkn) = w(mn) + w(m'n) + d(msn)qkln) qr ki qr,'+ +

w(m,n) =a(in) + a(n) + e (m,n)Wkl ak I kli

[lOa]

[lOb]

In Eq. lOa, the two-locus contribution is decomposed as the
sum of two-locus gametic contributions w(m"n) and w~7"n) and
a two-locus dominance deviation d(m,, while in Eq. 10b the
two-locus gametic contributions are in turn decomposed as
the sum of allelic contributions at each locus (ak(m), a()) and
a two-locus gametic epistatic deviation elm Let p(f) pfl.fl,
and Pl(.m) be the frequency of allele A(n the two-locus
gamete Ainm)A(n), and the two-locus genotype Aim)A(n)/
A5m)Ak1), respectively. Noting that

(n)
=
~ (mn~(nn) (min)

(n) = pim1ln) =2 Pk, iiJkl Pqr,
i ~~k qr

[11]

where the summations extend over all multilocus gametes
carrying allele A("), alleles A~i) and AI), and over all multi-
locus genotypes with the two-locus genotype AWin)A(n)/
Ain)AIn), letting r(mnn) denote the recombination fraction be-
tween loci m and n, and setting ,(,n) and {n) as the average
excess for fitness of gamete A~m)A n) and allele A respec-
tively, we get

WlTPl'n) = p ,n)f (.mnn) - r(in) Dn

WAp =n)-p(n) ((n)

[12a]

[12b]

(see ref. 20, pp. 92-93, and ref. 7, p. 1911, for the derivation
of Eqs. 12a and 12b, respectively), where

DA = E(Wl(-jmkl) ( ki (lmn) p(m,n) p(mn)) [13]kjU
i~k iPIilk l k

are the standard linkage disequilibria and W(mkn) is the
average fitness of the two-locus genotype Akm)Afr)/A(m)A(n).
Setting

Q(m-n)- p(mn) (m,n) (m,n)
ijkl - ij,kl PU Pkl [14]

as the deviation from random combination of gametes at loci
m and n, noting that

AWG = 2 Wi-AP. ,
Ii

[15]

recalling Eq. 7a and employing successively Eqs. 8-14 in Eq.
15, we eventually get

Vg + Ve-2A B-2C +D
AWG = w +W2 [16]

as the genetic component of the per generation change in
mean fitness, with

Vg = 2 a,, IIn()pn
n i

Ve = 2Z, Z e(.msn) e(.m,n) p~m,n)
m,n ij

A = E r(m,n) >e (.m) D~Tn)
m,n i

B = >pEmrfl) pJmf) {(m,n)C (rm,n)
m,n qr,kl

C (m~n) ~ (m~n) (mn,n) e(m,n) Dmn)

D = > r(m~n)2 > ds) D(m n) Drmn)
m,n qr,kl qr, qr I

E = > dd )lQ)D
m,n qr,kl

[17a]

[17b]

[17c]

[17d]

[17e]

[17f]

[17g]

Eq. 16 is a generalization of Nagylaki's (5) two-locus result,
with the E term added. In purely genetic systems, Hardy-
Weinberg proportions obtain in a single generation, so at all
subsequent times E = 0. However, in the biocultural case
there will generally be some persistent element ofnonrandom
mating at the phenotypic level, and E # 0 in general.
Consider now AWc:

Awc = f f dx dy c(x, y)Aq'(x, y). [18]

If there are no differences in fertility, the proportion of
offspring in the next generation having at least one parent
with fitness in [x, x + dx] is simply the proportion ofjuveniles
in the previous generation with fitness in [x, x + dx] that
survive to reproductive maturity. So if 4(x) = X>2P1jjx) is the
phenotype density amongjuveniles before selection, we have

AO(x) = 4(x)* - ((x), [19]

where 4(x)* = 4(x)x/W is the fitness density after selection
in the parental generation. Recalling Eqs. 5 and 7b and
substituting Eq. 19, we eventually obtain

-3w qW2
AWc = +-+ H,

W W2
[20]

where

f [21a]
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7w2 = f f dx dy q(x, y)xyb(x)o(y), [21b]

H = f f dx dy n(x, y)AQ(x, y). [21c]

Finally, consider AWGC given by

AWGC= X f f dx dy Eij(x, y)&(pijx, y). [22]

Let pi(x)dx = Ij Pij(x)dx be the density of juveniles before
selection with haploid genotype Ai and fitness in [x, x + dx].
Assuming no fertility differences among genotypes or phe-
notypes,

(p,(x) = Pi(X)* - (x), [23]

where pi(x)* = pi(x)x/W is the density of individuals with
haploid genotype Ai and fitness in [x, x + dx] after selection
in the parental generation. Recalling Eq. 6, using Eq. 23, and
noting that

E Of dy eij(x, y)Vp(y) =O, [24]

yields

6W2
AWG'C = y + K, [25]

where

E
2 f dx dy eij(x, y)xy p,(x)pj(y), [26a]

K= Z f f dx dy Eij(x, y)AQij(x, y). [26b]

Putting together Eqs. 16, 20, and 25, we finally obtain

1
AW = SW += (vg + Ve + ,w- 2A)

1
+..(B-2C+D+ 1w2+ew2)+E+H+K [26]

as the per generation change in population fitness.

DISCUSSION
Eq. 26 represents a generalized fundamental theorem of
natural selection under gene-culture transmission, of which
the purely genetic scenario considered by Fisher and subse-
quent workers is a special case. For example, when there are
no cultural effects [c(x, y) = 0], no gene-culture effects [Ei (x,
y) = 0], and Hardy-Weinberg proportions obtain, Eq. 26
reduces to the multilocus generalization of Nagylaki (equa-
tion 70 of ref. 5) result

1 1
AW=AW+=(Vg+Ve-2A)+WI(B -2C+D). [27]ww

Furthermore, if we assume constant genotypic fitness, no
epistasis, no linkage, and weak selection, and we scale the
genotypic Witnesses appropriately (see ref. 7), Eq. 25 further
reduces approximately to Fisher's fundamental theorem AW

Vg.
Comparison of Eqs. 26 and 27 illustrates the effects of

cultural transmission on the evolution of population fitness.
It is apparent that under gene-culture transmission, mean
fitness can continue to evolve even if the genetic (additive
plus epistatic) variance in fitness has been exhausted. More-
over, even forthe simple case ofrandom mating, no epistasis,
and constant fitnesses, fitness can decline (since (3w may be
negative), whereas in the genetic case under the same con-
ditions, mean fitness is nondecreasing (7, 21).
There is one other important difference, namely, that

cultural transmission introduces a time lag in the response of
the population to selection. To see this, let t denote the
generation number. Then (p(x),+1 = +(x)* and Ap(x),,,+j =
+(x)* - O(x)*-1, so that the change in the density (p(x)
depends on selection in both the current and the previous
generation. By contrast, in purely genetic systems, change
depends only on selection in the current generation. This
means that under gene-culture transmission, traits can con-
tinue to evolve after selection is relaxed (16-18), a phenom-
enon Kirkpatrick and Lande (18) have referred to as "evo-
lutionary momentum."
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